Published onWednesday, June 28, 2023Math Review Low Of Logarithms, Set, Directed Graphs and Functions, Summations, Mathematical Induction, Basic Number TheoryAuthorsNameVichea NathFacebook@nathvicheaLaws Of Logarithmsy=logb(x)y = log_b(x)y=logb(x) meaning byb^ybylog2(x)=log2(x)log_2(x) = log_2(x)log2(x)=log2(x)logn(x)=(log(x))nlog^n(x) = (log(x))^nlogn(x)=(log(x))nln(x)=loge(x)ln(x) = log_e(x)ln(x)=loge(x) (e ≈ 2.71828)logb(xy)=logb(x)+logb(y)log_b(xy) = log_b(x) + log_b(y)logb(xy)=logb(x)+logb(y)logb(x/y)=logb(x)−logb(y)log_b(x/y) = log_b(x) - log_b(y)logb(x/y)=logb(x)−logb(y)logb(x)=loga(x)loga(b)log_b(x) = \frac{log_a(x)}{log_a(b)}logb(x)=loga(b)loga(x)0<x<y⇒logb(x)<logb(y)0 < x < y \Rightarrow \log_b(x) < \log_b(y)0<x<y⇒logb(x)<logb(y)logb1=0log_b1 = 0logb1=0logbb=1log_bb = 1logbb=1logb(x)<x(for b≥2 and x>0)log_b(x) < x \quad \text{(for } b \geq 2 \text{ and } x > 0)logb(x)<x(for b≥2 and x>0)log1024=10log 1024 = 10log1024=10ln2≈0.693(in particular, 0<ln2<1)ln 2 \approx 0.693 \quad \text{(in particular, } 0 < \ln 2 < 1 \text{)}ln2≈0.693(in particular, 0<ln2<1)loge≈1.44(in particular, 1<loge<2)log e \approx 1.44 \quad \text{(in particular, } 1 < \log e < 2 \text{)}loge≈1.44(in particular, 1<loge<2)Discuss on Twitter • View on GitHub