Published on

Math Review Low Of Logarithms, Set, Directed Graphs and Functions, Summations, Mathematical Induction, Basic Number Theory

Authors

Laws Of Logarithms

  • y=logb(x)y = log_b(x) meaning byb^y

  • log2(x)=log2(x)log_2(x) = log_2(x)

  • logn(x)=(log(x))nlog^n(x) = (log(x))^n

  • ln(x)=loge(x)ln(x) = log_e(x) (e ≈ 2.71828)

  • logb(xy)=logb(x)+logb(y)log_b(xy) = log_b(x) + log_b(y)

  • logb(x/y)=logb(x)logb(y)log_b(x/y) = log_b(x) - log_b(y)

  • logb(x)=loga(x)loga(b)log_b(x) = \frac{log_a(x)}{log_a(b)}

  • 0<x<ylogb(x)<logb(y)0 < x < y \Rightarrow \log_b(x) < \log_b(y)

  • logb1=0log_b1 = 0

  • logbb=1log_bb = 1

  • logb(x)<x(for b2 and x>0)log_b(x) < x \quad \text{(for } b \geq 2 \text{ and } x > 0)

  • log1024=10log 1024 = 10

  • ln20.693(in particular, 0<ln2<1)ln 2 \approx 0.693 \quad \text{(in particular, } 0 < \ln 2 < 1 \text{)}

  • loge1.44(in particular, 1<loge<2)log e \approx 1.44 \quad \text{(in particular, } 1 < \log e < 2 \text{)}